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In this paper we show how, under certain restrictions, the hydrodynamic equa-
tions for the freely evolving granular fluid fit within the framework of the time
dependent Landau–Ginzburg (LG) models for critical and unstable fluids. The
granular fluid, which is usually modeled as a fluid of inelastic hard spheres
(IHS), exhibits two instabilities: the spontaneous formation of vortices and of
high density clusters. We suppress the clustering instability by imposing con-
straints on the system sizes, in order to illustrate how LG-equations can be
derived for the order parameter, being the rate of deformation or shear rate
tensor, which controls the formation of vortex patterns. From the shape of the
energy functional we obtain the stationary patterns in the flow field. Quantita-
tive predictions of this theory for the stationary states agree well with molecular
dynamics simulations of a fluid of inelastic hard disks.

KEY WORDS: Granular fluid; instabilities; pattern formation; hydrodynamic
equations; time dependent Landau–Ginzburg theory.

1. INTRODUCTION

Granular matter (1) consists of small or large macroscopic particles. When
out of equilibrium, its dynamics is controlled by dissipative interactions,
and distinguished in quasi-static flows or granular solids on the one hand,
and rapid flows or granular fluids (2) on the other hand.
Typical realizations of granular solids are sand piles, avalanches,

Saturn’s rings, grain silos. Here particles remain essentially in contact, and
the dynamics is controlled by gravity, friction and surface roughness.



In this paper we concentrate on granular fluids. Typical examples are driven
granular flows, such as Couette flow, (3) vibrated beds, (4–6) or rapid flows
with some form of continuous energy input. (7) Here the dynamics is con-
trolled by inelastic binary collisions, separated by ballistic motion of the
particles. The forces are of short range and repulsive, and the system is
frequently modelled as a collection of smooth inelastic hard spheres
(IHS) (8) of diameter s and mass m. Momentum is conserved during colli-
sions, which makes the system a fluid, but energy is not conserved. In a
collision, on average, a fraction E of the relative kinetic energy of the
colliding pair is lost, where E is referred to as the degree of inelasticity. In
the literature (2, 8, 9) E=1−a2, usually expressed in terms of the coefficient of
restitution a. Its detailed definition does not concern us here.
Here we focus on the idealized limiting case of a freely evolving rapid

flow without energy input and with nearly elastic collisions, and there-
fore slowly cooling. This system shows (9) two interesting instabilities. When
prepared in a spatially homogeneous equilibrium state, the system does not
stay there, but slowly develops patterns, both in the flow field (vortices),
and in the density field (clusters), the so called clustering instability.
The search for the proper macroscopic description of unstable gra-

nular fluids has been pursued by many authors. (1–10, 13–26, 29, 30) Recently,
a new development, which is somewhat similar to ours, has been given by
Soto et al. (10) These authors also study granular fluids, contained in systems
that are sufficiently small, such that the clustering instability is suppressed.
In these small systems the growth of vortices is very slow.
The question of interest in the present paper is: can the nonlinear

hydrodynamic equations for granular fluids be fitted into the generic clas-
sification of Landau–Ginzburg-type models, as given by Hohenberg and
Halperin, (11) to describe critical dynamics and hydrodynamic instabilities?
The goal of this article is to illustrate how, under certain restrictions,
the standard nonlinear hydrodynamic equations for the IHS fluid (2, 8) can
be cast into a Landau–Ginzburg-type equation of motion for the order
parameter, which can be derived from an energy functional and, more
specifically, to point out which terms in the original hydrodynamic equa-
tions are responsible for the quartic terms in the Landau–Ginzburg energy
functional.
The plan of the paper is as follows. In Section 2, we start with the

hydrodynamic equations. The decay of the total energy at short times and
the results of a linear stability analysis are briefly reviewed. In Section 3, we
introduce an assumption of incompressible flows under certain restrictions
on system size or time regime. Then, under these assumptions, the hydro-
dynamic equations are reduced to a closed equation for a scaled flow field.
It is shown in Section 4 that this equation for a scaled flow field can be
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cast into the form of a time-dependent Landau–Ginzburg equation for an
appropriate order parameter. The shape of the energy functional is dis-
cussed and possible stationary solutions are presented. Finally, in Section 5,
we make a quantitative comparison of the theoretical predictions at large
times with molecular dynamics simulations of inelastic hard disks. We end
with some conclusions in Section 6.

2. DYNAMIC EQUATIONS AND INSTABILITIES

We start with the hydrodynamic equations, needed to formulate the
new extensions to be discussed in this paper. The macroscopic time evolu-
tion of the IHS fluid on large spatial and temporal scales can be described
by the nonlinear hydrodynamic equations (12) for the local density n(r, t),
the local flow field u(r, t) and the local temperature T(r, t), supplemented
with a sink term C accounting for the energy loss through inelastic
collisions, (2, 9) i.e.,

“tn+u ·Nn=−nN ·u,

“tu+u ·Nu=−
1
mn

Np+2n N ·D,

“tT+u ·NT=−
2p
dn

N ·u+bT N2T+2b+D : D−C

(1)

In this paper the inelasticity is always assumed to be small. For later con-
venience the macroscopic equations are given for a d-dimensional system.
The local energy density of the IHS fluid is e=1

2 mnu
2+d2 nT, and p is the

pressure. The shear rate Dab is the symmetrized dyadic, {Naub}, which is
also made traceless, and A : B=; ab AabBba. The coefficient bT=2o/dn is
proportional to the heat conductivity o, and b+=2mn/d to the shear vis-
cosity n. For simplicity of presentation the bulk viscosity has been set equal
to zero, and the transport coefficients n and o, which depend on the local
density and temperature, are taken at some fixed reference values, n̄(t) and
T̄(t), to be specified later. Here C is the collisional cooling, and 2b+D : D
represents the viscous heating. The nonlinear viscous heating will be taken
into account in the present paper, which is caused by gradients in the flow
velocity that considerably slow down the collisional cooling process.
On the basis of kinetic theory one can derive that the rate of colli-

sional energy loss, C=2c0wT, is proportional to the collision frequency
w ’ nsd−1v0 and to the energy ET lost per collision, (13, 14) where c0=
E/2d=(1−a2)/2d. The explicit form of w(T) is proportional to the
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thermal velocity v0=`2T/m, and for hard sphere fluids given in refs. 15
and 16. When the system is prepared initially in a homogeneous equilib-
rium state, it evolves at short times as a spatially homogeneous cooling
state (HCS) with a time dependent temperature, given by Haff’s law (17)

E(t)=
d
2
T(t)=

E0
(1+c0w0t)2

=E0 exp(−2c0y) (2)

This result is needed for later comparison. Here E0=(d/2) T0 is the initial
energy, and t0=1/w0 with w0=w(T0) is the mean free time in the initial
state. The number of collisions per particle y(t) in a time t is defined
through dy=w(T(t)) dt. Integration of this relation in the HCS yields
exp(c0y)=(1+c0w0t).
However, this state is unstable against spatial fluctuations in density

n(r, t), temperature T(r, t) and flow velocity u(r, t). Our present theoretical
understanding of these instabilities is based on a linear stability analy-
sis (9, 14, 16, 18–21) of the hydrodynamic fluctuations in the density, dn=n−n̄,
temperature, dT=T−T̄, and flow velocity u. This is done by using the
rescaled Fourier modes dnk, dT̃k=dTk/T̄ and dũk ’ uk/`T̄, where an
overline denotes a spatial average, ā=(1/V) >V dr a(r), and T̄ is the global
temperature. Fourier transforms are defined as fk=>V dr e−ik · rf(r). The
rescaled eigenmodes are described by dak(y)=exp(zl(k) y) dak(0). The
well known exponential growth rates of unstable (zl(k) > 0) and stable
(zl(k) < 0) modes are shown in Fig. 1 as they are needed later on to
determine the system size or number of particles N, under which the
present nonlinear theory is applicable.
In this paragraph we summarize the essential consequences of the

linear stability analysis, and in the sequel we frequently use arguments
based on them. Figure 1 shows that the transverse flow field u+k or shear
mode (l=+) with a wave number k < kg+ is unstable, and develops vorti-
ces. On the other hand density fluctuations couple weakly, in order O(k), to
the heat modes (l=H), and zH(k) in Fig. 1 shows that these fluctuations
are unstable in the range k < kgH, and linearly stable in the range k > k

g
H,

i.e., remain at thermal noise level. The stability thresholds kg+ and k
g
H are

defined as the the root of zl(k)=0 for l={+, H}, and are marked as
black dots in the figure. The figure also shows that the growth rate z + (k)
for the vorticity mode is much larger than the growth rate for the heat
mode zH(k), which couples to the density fluctuations. This explains why
vortices appear long before the density clusters start to appear. (See also
refs. 9, 20, 22, 23.)
The shape of the dispersion relations for the growth rates also explains

the suppression of instabilities through a reduction of the system size. (14, 19–21)
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Fig. 1. Dispersion relations zl(k) (from right to left) for the shear mode (l=+), heat mode
(l=H) and the sound modes in the IHS fluid for an area fraction of f=0.4 and a restitution
coefficient a=0.85. The stars mark the location of the minimum wave vector allowed in the
system, k0=2p/L, for the number of particles indicated, and the black dots mark the location
of the threshold values kga ’ 1/ta with corresponding correlation lengths ta where a=
(|| , H, +). Limiting behavior of the heat mode at kl0 ° c0, given by zH(k) ’ 1−t

2
||k
2 is shown

as a dotted line.

Let k0(N)=2p/L be the smallest wave number, allowed in a system of
linear extent L at fixed density and with periodic boundary conditions. In
systems with kgH < k0(N) < k

g
+ , there are growing vorticity modes, but all

density fluctuations are stable according to a linear stability analysis. In
systems with k0(N) < k

g
H the fluctuations in the density and in the flow

field are unstable. (19) However, systems with k0(N) > k
g
+ do not show any

instability. The smallest allowed wave numbers k0(N) for different numbers
of particles, N=50, 100, 200,..., 1000 at fixed packing fraction f, are
shown as stars in Fig. 1. The location of these stars with respect to those of
the thresholds (black dots) will determine the (in)stability of the systems
of size N with respect to fluctuations in density or flow field.
We finally remark that several authors have also studied nonlinear

terms in the macroscopic equations for granular fluids, such as the viscous
heating term, (9, 10, 24) and the nonlinear convective term. (25) The inclusion of
the combined effects of nonlinear viscous heating and collisional cooling is
essentially the mechanism driving the dynamics of dissipative granular
fluids in the time regime, directly following the homogeneous cooling
state.
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In the present paper we will elucidate the essential physics by deriving
the zeroth order contribution of the nonlinear terms in an intuitive fashion.
A more systematic derivation will be published elsewhere. (26)

3. INCOMPRESSIBLE FLOWS

Instabilities and pattern formation occur in two different local fields,
u and n, and on two different time scales, namely first patches of vorticity
appear, and only much later density clusters appear. (9, 15) As explained
above, the appearance of density clusters can even be further delayed, or all
together suppressed by decreasing the system size. (14, 19–21) These observa-
tions suggest to analyze first the simplest nonlinear case where fluctuations
in density and temperature remain small, but nonlinear viscous heating
is taken into account. This would happen in the time regime following
the unstable homogeneous cooling state, and possibly in the full time
regime for sufficiently small systems, as suggested by a linear stability
analysis. Of course the stability of solutions on the largest time scales is
determined by the full nonlinear equations. The conditions for small n- and
T-fluctuations might be realized in incompressible flows, where N · u=0.
Then the density remains constant in the comoving frame, and the tem-
perature balance equation greatly simplifies. As is well known from stan-
dard fluid dynamics and from the theory of turbulence, (27, 28) flows of elastic
fluids are quite incompressible. This implies,

N ·u=0 or u||k — k̂ ·uk=0 (3)

where u||k is the longitudinal Fourier mode. Moreover, MD simulations and
the theory of hydrodynamic fluctuations in granular flows (15, 16) show that
the incompressibility assumption, u||k=0, remains valid down to very small
wave numbers, satisfying kt|| N 1 , and ultimately breaks down at the
largest wavelengths, where t|| ’ 1/c0 is the largest intrinsic dynamic corre-
lation length in IHS fluid. It satisfies the inequality, t|| ± t+ — (n/wc0)1/2

for nearly elastic systems. Both correlation lengths are indicated in Fig. 1
and defined more explicitly in ref. 16.
Therefore, as a zeroth approximation to our nonlinear theory, we

make the incompressibility assumption, N ·u=0, following refs. 15 and 16,
and the equations of motion become,

“tn+u ·Nn=0,

“tu+u ·Nu=−
1
mn

Np+n N2u,

“tT+u ·NT=bTN2T+b+[Nu+(Nu)†] : Nu−2c0wT

(4)
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where (Nu)†ab=Nbua. This set of nonlinear equations supposedly describes
the nonlinear time evolution of the temperature and flow field as long as
the density fluctuations are small.
As a consequence of the incompressibility assumption the local density

stays constant in time, and neither depressions, nor hot and cold regions
can develop. Therefore, the pressure gradient in (4) remains negligibly
small as well, so Np 4 0, and the Navier–Stokes equation becomes,

“tu=−u ·Nu+n N2u (5)

where the flow velocity u=u + is purely rotational with N ·u=0. We also
note that the divergence of Eq. (5), in combination with N ·u=0, reduces
to (Nu) : (Nu)=0 at all times.
Next we consider the temperature balance equation, which involves

two processes: the diffusion process of heat conduction, where Fourier
modes Tk decay with a rate bTk2, and the global process of collisional
cooling and nonlinear viscous heating, describing the decay of Tk for kQ 0,
orequivalentlyof T̄(t) — (1/V) >V dr T(r, t), referredtoasglobal temperature.
To split off the behavior of T̄(t) from Eq. (4) we take the spatial

average of the T-equation, so that the nonlinear terms u ·NT and Nu : Nu
vanish because of incompressibility assumption, yielding for the nonlinear
evolution of the global temperature:

“tT̄=b+ |Nu|2−2c0wT̄ (6)

where overlines denote spatial averages. We have introduced the notation
|A|2=; ab |Aab |2, for a second rank tensor A. The transport coefficient b+
and collision frequency w are functions of the spatially average density
n̄=N/V and temperature T̄(t) (see ‘‘reference values’’ below Eq. (1)). This
is allowed as long as the local fluctuations dn=n−n̄ and dT=T−T̄
remain small.
The new evolution Eqs. (5) and (6) contain the time dependent coeffi-

cients b+ , w and n, which are proportional to v̄0(t) — (2T̄(t)/m)1/2. There-
fore, it is convenient to introduce the scaled field ũ=u/v̄0, and the scaled
time y, defined as dy=w(T̄) dt. The final macroscopic evolution equations
then become,

“y ln T̄=
4
d
D+ |Nũ|2−2c0,

“y ũ+l0 ũ ·Nũ=D+ N2ũ−
1
2
(“y ln T̄) ũ

=c0 ũ+D+ N2ũ−
2
d
D+ |Nũ|2 ũ (7)
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where l0=v̄0/w is the (time-independent) mean free path. The last equa-
tion is a closed equation for ũ, and the physically consistent solutions need
to obey the relation N ·u=0. The global temperature is slaved by the flow
field. The rescaled vorticity diffusion coefficient, defined as D+=n/w, is
independent of time. The first term on the right hand side of the equation
for ũ accounts for the instability, the second for the vorticity diffusion and
the last one for the saturation effects, caused by the nonlinear viscous
heating. It slows down the growth of unstable k-modes, and may ultimately
lead to a steady state for ũ. For large times nonlinear effects will induce
density inhomogeneities, even in small systems with kgH < k0(N) < k

g
+ . If

these density inhomogeneities do not remain small enough, the above
equations (5) and (6) are no longer valid.

4. SPONTANEOUS SYMMETRY BREAKING

In this section we will drop the nonlinear convective term ũ ·Nũ, but at
the end of our analysis we admit out of all possible solutions only those
that satisfy Eq. (7) with the convective term included.
The final equation for the rescaled u-field has the form of the

Landau–Ginzburg equation of motion for a non-conserved order param-
eter. This can be made more explicit by introducing the order parameter
S=Nũ, and applying N to the u-equation in (7) with the result,

“yS=(c0+D+N
2) S−

2
d
D+ |S|2 S

=−V dH[S]/dS† (8)

where the last line contains the functional derivative of the energy
functionalH[S], defined as

H[S]=−
1
2
c0 |S|2+

1
2
D+ |NS|2+

1
2d

D+(|S|2)2 (9)

In our further considerations it is more convenient to use Fourier modes.
Moreover uk=u+k, because of the assumption of incompressibility, and
Sk — kũ+k. Then we obtain the equation of motion,

“ySk=−V2 dH[S]/dS
†
k

=3c0−D+k2−
2D+

dV2
C
q
|Sq |24 Sk (10)
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with an energy functional,

H[S]=
1
2V2

C
k
(−c0+D+k2) |Sk |2+

D+

2d
1 1
V2

C
k
|Sk |22

2

(11)

where the wave number k=0 does not contribute.
The energy in (9) and (11) resembles a Landau free energy form for a

tensorial order parameter S=Nũ with tr S=N · ũ=0, which is in fact the
shear rate or rate of deformation tensor. It has a quartic term S4, and a
quadratic term S2 with a coefficient that vanishes at a critical threshold
kg+=(c0/D+ )1/2. It differs from the standard Landau free energy in that
the quartic term contains summations over two totally independent wave
numbers.
These results are very interesting. If the energy functional has a

minimum, then there is a fixed point solution, Sk(.), that is approached
for large times. They are found by setting the right hand side of (10) equal
to zero, i.e.,

3c0−D+k2−
2D+

dV2
C
q
|Sq |24 Sk=0 (12)

We will show that depending on the parameter, k0=2p/L, being
above or below the threshold value kg+ — `c0/D+ , the fixed point value of
the order parameter, {Sk(.)}, is vanishing or non-vanishing. A stable fixed
point with some non-vanishing Fourier components indicates that the
system approaches a non-equilibrium steady state with a stationary pattern
in the flow field, and spontaneous symmetry breaking has occurred.
Consider the right hand side of (10), and observe that the expression

between curly brackets is necessarily negative for k > kg+ , and the Fourier
mode Sk decays to zero. If the smallest possible wave number satisfies,
k0 > k

g
+ , all Sk decay to zero, and there is no spontaneous symmetry

breaking. The system remains spatially homogeneous. However, if k0 < k
g
+ ,

then the right hand side of (10) may become zero and even positive. There
is the possibility of stationary and of exponentially growing solutions, and
the expression inside brackets in Eq. (10) may vanish for a non-vanishing
value of Sk(.), i.e., there is an extremum determined by the condition,

1
V2

C
q
|Sq |2=

d
2
(c0−D+k2)/D+ (13)

If the extremum is a saddle point then there are directions of exponentially
growing solutions. The fixed point {Sk(.)=0 for any k} is a saddle
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Fig. 2. Landscape plot of the energyH[S] in the Sk0 -subspace.

point. One can also show (See Appendix A) that all fixed point solutions
with non-vanishing Sk for any |k| ] k0 are saddle points, and that the only
non-vanishing solution {;k0 |Sk0 |

2 ] 0, Sk=0 if |k| ] k0}, where ;k0 is
summation over k0 with |k0 |=k0, is a stable fixed point with an infinitely
degenerate minimum, given symbolically by the Mexican hat shape as
illustrated in Fig. 3. The condition (13) for u+k with |k|=k0=2p/L in
d-dimensions is then

1
V2

C
d

a=1
|ũk0a |

2=
d
4
(c0−D+k

2
0)/D+k

2
0 (14)

where k0a=k0 êa and êa is a unit vector in the direction a (a={1, 2,..., d}).
As the solutions of these equations have to satisfy Eq. (3), the Fourier
components can be written as

ũk0a=
1
2
V C
b( ] a)

êbAab e ihab (15)

where the phases hab and amplitudes Aab are 2d(d−1) real numbers. On
account of (14) the amplitudes satisfy the relations

A20 — C C
1 [ a ] b [ d

A2ab=d(c0−D+k
2
0)/D+k

2
0 (16)
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f=0.4

k0=0.224

a=0.85

w0=4.14

D+=0.334

T̄(600)=2.37×10−10

E(600)=1.27×10−9

n̄0(600)=2.18×10−5

Fig. 3. Left: Instantaneous configuration of the IHS fluid after y=600 collisions per par-
ticle for a system of N=400 discs at area fraction of f=0.4, which clearly exhibits the velocity
profile as well as the high density state. The arrows indicate the instant velocity of the par-
ticles and the circles the actual size. A shear flow is observed in agreement with the solution of
the nonlinear equations given in Eq. (18). Right: Numerical data for this and subsequent
plots. Last three entries are at y=600. Units are chosen such that initial temperature T0=1,
mass m=1, and sphere diameter s=1.

The stable stationary solutions in real space are then

ũ0(r)=C C
a ] b

Aab êb cos (k0ra+hab) (17)

Out of this set of solutions we select those that satisfy the full nonlinear
Eq. (7) with the convective term included, i.e., we determine the d(d−1)
amplitudes Aab such that the relation, ũ0 ·Nũ0=0, is satisfied. This yields d
conditions. For the two-dimensional case only two fixed point solutions
remain, instead of infinitely many degenerate minima, i.e.,

ũ0(x)=êyA0 cos(k0x+hx)

ũ0(y)=êxA0 cos(k0 y+hy)
(18)

The symmetry of the steady state is spontaneously broken, and sponta-
neous fluctuations in the initial state determine which of these two minima
will be reached.
In summary, the equation, describing the growth dynamics of vortices

in granular fluids, without the convective term is described by a time
dependent Landau–Ginzburg equation for a non-conserved order param-
eter, S=Nũ, derived from an energy functional with a continuous set of
degenerate minima, having the shape of a Mexican hat. The last observa-
tion may suggest that unstable granular fluids have some resemblance to
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Model H (11) which has a similar energy surface in the neighborhood of its
stable fixed points. However, this is not the case. Addition of the nonlinear
convective term to Eq. (8) selects out of this infinite set of minima only
subsets of admissible solutions. In two dimensions only two distinct minima
survive. Therefore, the unstable two-dimensional IHS fluid has a greater
resemblance to spinodal decomposition for a non-conserved order param-
eter, which belongs to the universality class of Model A. (11) It should be
noted that the complete solution of Eq. (7) with the convective term
included may have a larger set of physically acceptable solutions. However,
we have not been able to find any.

5. MD-SIMULATIONS

In this section we present results obtained from our theory and compare
the theoretical predictions with the results of computer simulations of small
systems in two dimensions.
A snapshot of a typical configuration for a small system with kgH < k0 <

kg+ at large times y± ycr=L
2/D+ is shown in Fig. 3. Here ycr is a charac-

teristic time when a typical size of vortices becomes comparable to the system
size L. A shear flow with variation of the ux-component in the y-direction
is observed. Individual vx-components of the particle velocities are plotted
in Fig. 4 versus their y-coordinate. A fit to a sinusoidal curve (solid line)
shows that the solution described in (18) is realized. It should also be noted
that the presence of a velocity field makes the local energy per particle dif-
ferent from the local temperature. These two quantities are clearly different
in Fig. 5.

Fig. 4. Profile of shear flow in Fig. 3. Dots represent the instantaneous velocities of the
particles; the solid line is a fit to the sinusoidal function, described in Eq. (18), with amplitude
Asim/v̄0 4 2.78 and theoretical prediction A0 4 2.51.
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Fig. 5. Behavior of the temperature (circles) as a function of the number of collisions per
particle y. It is compared with the energy per particle (solid line), demonstrating the validity of
Eq. (24). For instance, at y=600 one finds by simulation (E/T̄)sim 4 5.38 with a theoretical
value c0/D+k

2
0 4 4.14. In the stationary state there is a clear distinction between total energy

per particle E, and the energy T in the comoving frame.

We assume that the number of collisions y in the simulations of Figs. 3
and 4 is sufficiently large, so that the components ũk are very close to their
fixed point values. Then, the relation, D+ |Nũ|2=1

2 d(c0−D+k
2
0), follows

from (17), and “y ln T̄ 4 −2D+k
2
0 from (7). The global temperature for

large times, i.e., y± ycr, becomes,

T̄ 4 Te exp(−2D+k
2
0y) (19)

Equation (19) gives the temperature as a function of y. The integration
constant cannot be determined from the theory, but a fit of (19) to the
simulation data in Fig. 5 for y > 200 yields Te 4 3.87×10−4. We also note
that the mode coupling theory of ref. 23, developed for thermodynamically
large systems, gives the same decay rate for the total energy, when this
theory is applied to the small systems, considered here. For these small
systems the Fourier sum (1/V); q can not be replaced by > dq/(2p)d, but
is essentially given by its first term only.
The relation between y and t is defined through dy=w(T̄) dt, where

the collision frequency w is proportional to the square root of T̄, i.e.,

dy
dt
=w(T̄)=w0 = T̄T0

4 w0
=Te
T0
exp [−D+k

2
0y] (20)
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where w0=w(T0) is the collision frequency at the initial time. As w can be
measured directly as a function of t in MD simulations, it yields an inde-
pendent determination of Te with the result Te 4 3.68×10−4. Integration of
(20) yields,

exp(D+k
2
0y) 4 w0 =

Te
T0

D+k
2
0(t− te) (21)

valid for (t− te) large. After eliminating y from Eq. (19) and (21) we obtain
the global temperature for asymptotically large time t as,

T̄ 4
T0

(w0D+k
2
0)
2

1
(t− te)2

(22)

where visual inspection of Fig. 6 shows that te 4 104. The temperature
shows algebraic decay with the same exponent as in Haff’s law (2), but the
prefactor in Haff’s law does neither depend on the system size, nor on
the dimensionality. In (22) it is proportional to L4 ’N4/d, whereas the
prefactor in Haff’s law is independent of the system size (see Fig. 6).
Once we have T̄, we can calculate the averaged energy per particle, as,

E=
1
n
5m
2
n u2+

d
2
nT6=T̄ 5ũ2+d

2
6 (23)

Fig. 6. Left: Simulation results of the behavior of E(t) as a function of t for N particles. At
large times (t N 104 for f=0.4 and a=0.85), a power law tail ’ 1/t2 is observed. The coeffi-
cient B, defined in (25), is on average 2.3×10−5 with a theoretical value B 4 1.2×10−5. Right:
the amplitude of the tail is proportional to N3. Here the solid line is the result of the theory,
Eq. (25), while the dots are simulation results extracted from the left panel.
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where local density variations are supposedly small and the relation u=v̄0 ũ
has been used. Combination of this result with (17) yields,

E 4
dc0
2D+k

2
0

T̄ (24)

This shows that at long times, the energy and temperature are proportio-
nal, and differ by a non-trivial factor. Therefore, energy decays exponen-
tially when expressed in terms of y (see (19)), with the same decay rate as
the global temperature. This property is observed by MD simulations, as
shown in Fig. 5. From (22) and (24) the decay of the energy per particle in
terms of t in the long time limit is given by

E(t) 4
dc0 T0

2w20(D+k
2
0)
3

1
(t− te)2

— B
N6/d

(t− te)2
(25)

Hence, if we vary the number of particlesN, at fixed packing fraction f,
the amplitude of t−2-decay of the energy is proportional to N3 in two-
dimensional systems, or to N6/d in d-dimensional systems. Comparison of
Eq. (25) with simulations is shown in Fig. 6. It would also be interesting to
compare the coefficient B in (25) with the simulation results of ref. 29 for
the IHS fluid which have been performed in five and six dimensions.
Finally, by extending the present analysis one can also calculate the

local density and local temperature with the result, (26)

dT̃ —
T(y)
T̄
−1 4 −

nA20
4bT
cos[2(k0 y+hy)]

dñ —
n(y)
n̄
−1 4

nA20 T̄ 1
“p
“T
2

4bT n̄ 1
“p
“n
2
cos[2(k0 y+hy)]

(26)

where n̄=N/V, and hy is the same phase factor as given in (18). The deri-
vation will be published elsewhere. (26) It means that the density and tem-
perature inhomogeneities show a period which is half the period of the
shear flow profile. The relation between the spatial periods has already
been observed in ref. 9 in MD simulations of a fluid of two-dimensional
hard disks, and in ref. 24 in Direct Monte Carlo simulations of the
Boltzmann equation for an IHS gas, without analytical predictions for the
amplitudes. In ref. 10, an analytical result that is similar to (26) is given for
systems which are close to the stability thresholds kg+ . Figure 7 shows the
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Fig. 7. Density (squares) and temperature (circles) inhomogeneities, dñ and dT̃ at y=600.
The solid lines correspond to nonlinear fits to sinusoidal functions of half the period in (26)
with amplitudes AT(sim)=0.5 and An(sim)=0.24, and theoretical predictions given by (26) are
nA20/4bT=0.32 and nA

2
0T̄(“p/“T)/4bT n̄(“p/“n)=0.14, respectively. The simulated ratio of

dT̃- to dñ amplitudes is here 2.0, and the theoretical prediction is 2.3.

observed density and temperature inhomogeneities. A fit to a sinusoidal
curve supports the temperature and density profiles given by (26).
As shown in Eq. (26), the temperature and density inhomogeneities

are in opposite phase, implying that dense regions are cold, and the dilute
regions hot. The amplitudes are such that the overall pressure is constant,
as we have assumed in the course of the paper.

6. CONCLUSIONS

Under the restrictions imposed in our derivations, as discussed in
Section 3, we have shown that the unstable dynamics and formation of
vortex patterns in the flow field of a freely evolving fluid of inelastic
hard spheres (IHS) can be cast in the form of a time-dependent Landau–
Ginzburg-type model for a non-conserved order parameter. In the two-
dimensional case (but not for d \ 3) the growth of the vortex pattern in the
IHS fluid is qualitatively similar to spinodal decomposition for a non-
conserved scalar order parameter, referred to as model A in the Hohenberg–
Halperin classification. (11) A formal analogy between the unstable IHS fluid
in two-dimensions and spinodal decomposition, based on the dispersion
relations of the unstable Fourier modes (see Fig. 1), has been pointed out
before in ref. 22. A difference between our model and model A is that the
energy functional (9) contains a quartic term with summations over two
independent wave numbers. This implies a non-local interaction of the
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order parameter S=Nũ. The non-local interaction is caused by the scaled
field ũ=u/v̄0 ’ u/`T̄. Because the global temperature T̄ is determined by
S in all space (see Eq. (6)), the evolution of a local order parameter S is
affected by S at any other points in space through T̄.
We have shown that nonlinear viscous heating gives rise to a quartic

term in the energy functional, which is responsible for saturation of
unstable vorticity modes. Unstable vorticity modes initially grow as pre-
dicted by the linear stability analysis, but eventually saturate because of
nonlinear viscous heating. The influence of nonlinear viscous heating on
the formation of temperature inhomogeneities and clustering has been
pointed out and studied by Goldhirsch and Zanetti, (9) and investigated in
more detail by Brey et al., (24) by comparing the results of a hydrodynamic
model with viscous heating, using direct Monte Carlo simulation of the
Boltzmann equation.
The theoretical predictions of our theory for the flow field and the

decay of the energy are in quantitative agreement with MD simulations of
small systems as shown in Section 5. They support the intuitive arguments
used in deriving the evolution equation (7) for the scaled flow field ũ,
presented in Section 3. Moreover, the results presented here can be obtained
as the lowest order approximation in a systematic expansion. (26) Density
and temperature inhomogeneities are only found in the next order of
approximation.
It is worth mentioning that results of the present theory and the first

order corrections are consistent with the results of a nonlinear analysis by
Soto et al. (10) of systems which are close to the stability thresholds kg+ . If the
smallest wave number of the system k0 is slightly smaller than k

g
+ , vorticity

modes with the wave number k0 grow so slowly that the remaining hydro-
dynamic modes are enslaved by these vorticity modes. On the basis of an
adiabatic elimination method, they obtained amplitude equations for the
vorticity modes with k0, and the stationary inhomogeneous density and
temperature with a period which is half the period of the shear flow profile.
In their theory, incompressibility is not assumed but obtained as a result of
an adiabatic elimination method.
Finally, we emphasize that the periodic boundary conditions, with

which the simulations were carried out, obviously play a crucial role in the
formation of a shear flow profile and of the density and temperature pro-
files, presented in (18) and (26) respectively. Indeed, once the typical size of
the vortex patterns becomes comparable to the length L of the system for
y > ycr=L2/D+ , the artificial periodic boundary conditions start to affect
the evolution of the system. Consequently, the long time regime y± ycr
described by the stationary solution is of less physical interest than the
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regime of unstable growth y° ycr, where the typical size of the vortex
patterns remains small compared to the length L of the system. A thermo-
dynamically large system is always in the unstable growth regime. Unfortu-
nately, the only analytic ’large’ time results for the unstable growth regime
of granular fluids in thermodynamically large systems, have been obtained
from fluctuating (linear) hydrodynamic equations or from mode coupling
theory, (23, 30) but not from truly nonlinear theories. An exception is a dilute
gas of inelastic point particles in one dimension, (25) where strong evidence
supports the conjecture that the large space-time behavior is described by
the adhesion model and the Burgers equation.

APPENDIX A: FIXED POINT SOLUTIONS AND THEIR

ASYMPTOTIC STABILITY

First, we show that the fixed point solutions with non-vanishing
Sk(.) have to have the form

3 1
V2

C
ku

|Sku |
2=
d
2
(c0−D+k

2
u)/D+ , Sk=0 if |k| ] ku 4 (A.1)

where ;ku is summation over wave numbers ku that satisfy |ku |=ku with a
given ku < k

g
+ . If we consider any fixed point solution that possesses a non-

vanishing Sk1 (.) and a non-vanishing Sk2 (.) with |k1 | ] |k2 |, we see that
the relation (12) can not be fulfilled for the both cases k=k1 and k=k2.
Therefore, this type of fixed point solutions are prohibited. Besides, from
(12) a non-vanishing Sk(.) is not allowed if |k| > k

g
+ . Hence, from (12) we

conclude that only the type of fixed point solutions given by (A.1) is
possible.
Next, we discuss asymptotic stability of these fixed point solutions. If

we express a state of the order parameter {Sk} as a vector in a vector space
spanned by all independent components of {Sk}, the energy functional (11)
is a function of this vector. Although a linear stability analysis of (10) is
straightforward and it gives detailed information of geometry around fixed
points in the vector space, we will give here only a simple argument that is
enough for our purpose.
We first show that any fixed points that satisfy (A.1) with ku ] k0 in

the vector space are saddle points. Consider a fixed point solution that
satisfies (A.1) with ku ] k0 and a small perturbation {dSk ] 0 if |k| < ku,
dSk=0 otherwise} around it. Then the evolution equation for this small
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perturbation is given by the Eq. (10) linearized around the fixed point
solution, i.e.,

“y dSk=3c0−D+k2−
2D+

dV2
C
ku

|Sku |
24 dSk

=D+(k
2
u−k

2) dSk (A.2)

for |k|=k < ku. Because k < ku, the linearized equation (A.2) implies the
fixed point solutions that satisfy (A.1) with ku ] k0 are unstable against a
small perturbation in the directions of Sk with |k| < ku in the vector space.
The similar argument for a small perturbation {dSk ] 0 if |k| > ku, dSk=0
otherwise} around the fixed point shows that there exist stable directions.
Therefore we conclude that these fixed points that satisfy (A.1) with ku ] k0
are saddle points.
The energy functional (11) gives the same value for any fixed points

that satisfy (A.1) with ku=k0. Because the energy functional (11) is
bounded from below, a hypersphere in the vector space that is determined
by (A.1) with ku=k0 forms the minimum of the energy functional that is
infinitely degenerate, as symbolically illustrated in Fig. 3.
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